Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Med Virol ; 95(6): e28881, 2023 06.
Article in English | MEDLINE | ID: covidwho-20235484

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented threat to human health since late 2019. Notably, the progression of the disease is associated with impaired antiviral interferon (IFN) responses. Although multiple viral proteins were identified as potential IFN antagonists, the underlying molecular mechanisms remain to be fully elucidated. In this study, we firstly demonstrate that SARS-CoV-2 NSP13 protein robustly antagonizes IFN response induced by the constitutively active form of transcription factor IRF3 (IRF3/5D). This induction of IFN response by IRF3/5D is independent of the upstream kinase, TBK1, a previously reported NSP13 target, thus indicating that NSP13 can act at the level of IRF3 to antagonize IFN production. Consistently, NSP13 exhibits a specific, TBK1-independent interaction with IRF3, which, moreover, is much stronger than that of NSP13 with TBK1. Furthermore, the NSP13-IRF3 interaction was shown to occur between the NSP13 1B domain and IRF3 IRF association domain (IAD). In agreement with the strong targeting of IRF3 by NSP13, we then found that NSP13 blocks IRF3-directed signal transduction and antiviral gene expression, counteracting IRF3-driven anti-SARS-CoV-2 activity. These data suggest that IRF3 is likely to be a major target of NSP13 in antagonizing antiviral IFN responses and provide new insights into the SARS-CoV-2-host interactions that lead to viral immune evasion.


Subject(s)
COVID-19 , Interferon Regulatory Factor-3 , Viral Nonstructural Proteins , Humans , COVID-19/immunology , Immune Evasion , Interferon Regulatory Factor-3/genetics , Interferons , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
2.
Int Arch Allergy Immunol ; 184(6): 529-538, 2023.
Article in English | MEDLINE | ID: covidwho-20238601

ABSTRACT

Since the global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a symptom of the onset of SARS-CoV-2, olfactory dysfunction (OD), has attracted tremendous attention. OD is not only a negative factor for quality of life but also an independent hazard and early biomarker for various diseases, such as Parkinson's and Huntington's diseases. Therefore, early identification and treatment of OD in patients are critical. Many etiological factors are responsible for OD based on current opinions. Sniffin'Sticks are recommended to identify the initial position (central or peripheral) for OD when treating patients clinically. It is worth emphasizing that the olfactory region in nasal cavity is recognized as the primary and critical olfactory receptor. Many nasal diseases, such as those with traumatic, obstructive and inflammatory causes, can lead to OD. The key question is no refined diagnosis or treatment strategy for nasogenic OD currently. This study summarizes the differences in medical history, symptoms, auxiliary examination, treatment and prognosis of different types of nasogenic OD by analyzing the current studies. We propose using olfactory training after 4-6 weeks of initial treatment for nasogenic OD patients with no significant improvement in olfaction. We hope that our research can provide valuable clinical guidance by systematically summarizing the clinical characteristics of nasogenic OD.


Subject(s)
Olfaction Disorders , Olfaction Disorders/diagnosis , Olfaction Disorders/therapy , Humans , Nasal Cavity , Prognosis , Inflammation
3.
China Tropical Medicine ; 23(3):310-313, 2023.
Article in Chinese | GIM | ID: covidwho-2322400

ABSTRACT

Viral shedding of SARS-CoV-2 is a continuous dynamic process, which can be divided into latent stage, initial stage, peak stage and decreasing stage according to the characteristics of viral shedding. After being infected with SARS-CoV-2, the infected person generally stays in the latent period for 1-3 days, which is characterized by continuous negative nucleic acid test results and no infectiousness, and the risk of infection for close contacts is very low. At the initial stage of viral shedding is characterized by a rapid decline in the Ct value of nucleic acid tests in a short time, and clinical symptoms gradually appear. The infectiousness of the infected person gradually increases during this period, and the risk of infection for close contacts also gradually increases, but it is still in the early stage of infection, the possibility of viral shedding is low, and the risk of infection of secondary close contacts is low. The peak of viral shedding is characterized by low Ct value in nucleic acid test and obvious clinical symptoms;during this period, the infected person is the most infectious, and the risk of infection of the contact is the highest, so the scope of close contacts should be expanded appropriately. The decreasing period is characterized by the gradual increase of Ct value of nucleic acid test and the gradual disappearance of clinical symptoms;during this period, the infectiousness of the infected person gradually decreases to disappear. In an outbreak, an infected person in the decreasing phase is more likely to be an early infected person in the transmission chain. If infected individuals in the decreasing phase are found in an area without a SARS-CoV-2 epidemic, it suggests that the local outbreak epidemic has been spreading for some time and may be larger in scale. According to the characteristics of viral shedding, risk personnel can be determined more scientifically and accurately, so as to minimize the risk and reduce the waste of epidemic prevention resources.

4.
Bioelectrochemistry ; 152: 108462, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2320689

ABSTRACT

Sensitive detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein (S protein) is of significant clinical importance in the diagnosis of COVID-19 pandemic. In this work, a surface molecularly imprinted (SMI) electrochemical biosensor is fabricated for the detection of SARS-CoV-2 S protein. Cu7S4-Au is used as the built-in probe and modified on the surface of a screen-printed carbon electrode (SPCE). 4-Mercaptophenylboric acid (4-MPBA) is anchored to the surface of the Cu7S4-Au through Au-SH bonds, which can be used for the immobilization of the SARS-CoV-2 S protein template through boronate ester bonds. After that, 3-aminophenylboronic acid (3-APBA) is electropolymerized on the electrode surface and used as the molecularly imprinted polymers (MIPs). The SMI electrochemical biosensor is obtained after the elution of the SARS-CoV-2 S protein template with an acidic solution by the dissociation of the boronate ester bonds, which can be utilized for sensitive detection of the SARS-CoV-2 S protein. The developed SMI electrochemical biosensor displays high specificity, reproducibility and stability, which might be a potential and promising candidate for the clinical diagnosis of COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Spike Glycoprotein, Coronavirus , COVID-19/diagnosis , Electrochemical Techniques , SARS-CoV-2 , Reproducibility of Results , Pandemics
5.
Health Policy Technol ; 12(2): 100758, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2310491

ABSTRACT

Background: During the COVID-19 epidemic, the number of obesities increased rapidly in China. Weight management apps have potential value in controlling obesity. Objective: Explore the mechanisms behind the adoption of weight management applications by overweight and obese individuals, including psychological factors and demographic variables. Methods: The theoretical model was extended from the technology acceptance model (TAM), and the structural equation model was used for hypothesis testing. From January 2020 to December 2021, we conducted a cross-sectional survey in six megacities in mainland China during the COVID-19 pandemic by an online questionnaire. Results: 1364 participants completed the questionnaire, and the proposed theoretical model explained 55.7% of the variance in behavioral intention. Perceived usefulness was predicted by perceived ease of use (ß = 0. 290), attitude was jointly predicted by perceived usefulness (ß = 0.118) and perceived ease of use (ß = 0.159). Behavioral intention was predicted by perceived usefulness (ß = 0. 256), perceived ease of use (ß = 0. 463), attitude (ß = 0. 293), and perceived risk (ß = -0.136). Health awareness (ß=0.016) did not significantly affect behavioral intention. Four demographic variables gender, age, education, and residence exerted significant moderating effects in theoretical model. Conclusions: During the COVID-19 epidemic, the health awareness and behavior patterns of obese people have changed significantly. Psychological factors and demographic characteristics dynamically interact to generate user behavioral intentions of weight management applications. Weight management application developers and marketers should focus on perceived usefulness, safety, ease of use, and health awareness.

6.
J Thorac Dis ; 15(2): 452-461, 2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2288758

ABSTRACT

Background: At a crucial time with the rapid spread of Omicron severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus variant globally, we conducted a study to evaluate the efficacy and safety of arbidol tablets in the treatment of this variant. Methods: From Mar 26 to April 26, 2022, we conducted a prospective, open-labeled, controlled, and investigator-initiated trial involving adult patients with confirmed Omicron variant infection. Patients with asymptomatic or mild clinical status were stratified 1:2 to receive either standard-of-care (SOC) or SOC plus arbidol tablets (oral administration of 200 mg per time, three times a day for 5 days). The primary endpoint was the negative conversion rate within the first week. Results: A total of 367 patients were enrolled in the study; 246 received arbidol tablet treatment, and 121 were in the control group. The negative conversion rate of SARS-CoV-2 within the first week in patients receiving arbidol tablets was significantly higher than that of the SOC group [47.2% (116/246) vs. 35.5% (43/121); odds ratio (OR), 1.619; 95% confidence interval (CI): 1.034-2.535; P=0.035]. Compared to those in the SOC group, patients receiving arbidol tablets had a shorter negative conversion time [median 8.3 vs. 10.0 days; hazard ratio (HR), 0.645; 95% CI: 0.516-0.808; P<0.001], and a shorter duration of hospitalization (median 11.4 vs. 13.7 days; HR, 1.214; 95% CI: 0.966-1.526; P<0.001). Moreover, the addition of arbidol tablets led to better recovery of declined blood lymphocytes, CD3+, CD4+, and CD8+ cell counts. The most common adverse event (AE) was transaminase elevation in patients treated with arbidol tablets (3/246, 1.2%). No one withdrew from the study due to AEs or disease progression. Conclusions: As a whole, arbidol may represent an effective and safe treatment in asymptomatic-mild patients suffering from Omicron variant during the pandemic of coronavirus disease 2019 (COVID-19).

7.
Popul Stud (Camb) ; : 1-18, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2288951

ABSTRACT

Using survey data collected from Hubei province, China's Covid-19 epicentre, in August 2020, this study examines how fertility intentions of Chinese citizens changed during the Covid-19 pandemic. We consider not only whether people changed their fertility plans due to Covid-19 but also distinguish three types of change: bringing forward ('sooner'), postponing ('later'), and abandoning ('never') planned fertility. Over half of those who planned to have a child intended to change their fertility plans due to Covid-19. Younger individuals, those of non-Han ethnicities, urban residents, those with one child already, and those with ever-infected family members were more likely to change their fertility plans. While the effects of some characteristics seem to be short term, other characteristics such as age and number of children show more consequential influences. Older individuals and those planning their second child were particularly prone to abandoning their childbearing plans due to Covid-19. The pandemic may thus complicate China's latest efforts to boost its low fertility.

8.
World J Pediatr ; 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2245140

ABSTRACT

BACKGROUND: The number of pediatric cases of infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has increased. Here, we describe the clinical characteristics of children in a tertiary children's medical center in Shanghai. METHODS: A total of 676 pediatric coronavirus disease 2019 (COVID-19) cases caused by the Omicron variant who were admitted to the Shanghai Children's Medical Center from March 28 to April 30, 2022 were enrolled in this single-center, prospective, observational real-world study. Patient demographics and clinical characteristics, especially COVID-19 vaccine status, were assessed. RESULTS: Children of all ages appeared susceptible to the SARS-CoV-2 Omicron variant, with no significant difference between sexes. A high SARS-CoV-2 viral load upon admission was associated with leukocytopenia, neutropenia, and thrombocytopenia (P = 0.003, P = 0.021, and P = 0.017, respectively) but not with physical symptoms or radiographic chest abnormalities. Univariable linear regression models indicated that comorbidities (P = 0.001) were associated with a longer time until viral clearance, and increasing age (P < 0.001) and two doses of COVID-19 vaccine (P = 0.001) were associated with a shorter time to viral clearance. Multivariable analysis revealed an independent effect of comorbidities (P < 0.001) and age (P = 0.003). The interaction effect between age and comorbidity showed that the negative association between age and time to virus clearance remained significant only in patients without underlying diseases (P < 0.001). CONCLUSION: This study describes the clinical characteristics of children infected with the Omicron variant of SARS-CoV-2 and calls for additional studies to evaluate the effectiveness and safety of vaccination against COVID-19 in children.

9.
Bioelectrochemistry ; 151: 108375, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2209868

ABSTRACT

Accurate detection of SARS-CoV-2 spike (SARS-CoV-2-S) protein is of clinical significance for early diagnosis and timely treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a surface molecularly imprinted miniature biosensor was fabricated. Au nanoparticles (AuNPs), reduced graphene oxide (rGO), poly(methylene blue)/poly(ionic liquids) and poly(ionic liquids) were successively electrodeposited onto the pinpoint of an acupuncture needle (AN). The molecularly imprinted miniature biosensor was obtained after the template of SARS-CoV-2-S protein was removed, which could be used for sensitive detection of SARS-CoV-2-S protein. The linear range and limit of detection (LOD) were 0.1 âˆ¼ 1000 ng mL-1 and 38 pg mL-1, respectively, which were superior to other molecularly imprinted biosensors previously reported. The developed miniature biosensor also exhibited high specificity and stability. The reliability of the biosensor was evaluated by the detection of SARS-CoV-2-S protein in clinical serum samples.


Subject(s)
Acupuncture Therapy , Biosensing Techniques , COVID-19 , Ionic Liquids , Metal Nanoparticles , Molecular Imprinting , Humans , Spike Glycoprotein, Coronavirus , Gold , Electrochemical Techniques , Reproducibility of Results , Electrodes , SARS-CoV-2
10.
Appl Soft Comput ; 133: 109925, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2158460

ABSTRACT

When COVID-19 suddenly broke out, the epidemic areas are short of basic emergency relief which need to be transported from surrounding areas. To make transportation both time-efficient and cost-effective, we consider a multimodal hub-and-spoke transportation network for emergency relief schedules. Firstly, we establish a mixed integer nonlinear programming (MINLP) model considering multi-type emergency relief and multimodal transportation. The model is a bi-objective one that aims at minimizing both transportation time consumption and transportation costs. Due to its NP-hardness, devising an efficient algorithm to cope with such a problem is challenging. This study thus employs and redesigns Grey Wolf Optimizer (GWO) to tackle it. To benchmark our algorithm, a real-world case is tested with three solution methods which include other two state-of-the-art meta-heuristics. Results indicate that the customized GWO can solve such a problem in a reasonable time with higher accuracy. The research could provide significant practical management insights for related government departments and transportation companies on designing an effective transportation network for emergency relief schedules when faced with the unexpected COVID-19 pandemic.

11.
Atmos Environ (1994) ; 289: 119308, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2060426

ABSTRACT

During the Covid-19 outbreak, strict lockdown measures led to notable reductions in transportation-related emissions and significantly altered atmospheric pollution characteristics in urban and suburban areas. In this work, we compare comprehensive online measurements of PM2.5 major components and organic molecular markers in a suburban location in Shanghai, China before lockdown (Dec. 28, 2019 to Jan. 23, 2020) and during lockdown (Jan. 24 to Feb. 9, 2020). The NOx levels declined sharply by 59% from 44 to 18 ppb during the lockdown, while O3 rose two times higher to 42 ppb. The PM2.5 level dropped from 64 to 49 µg m-3 (-24%). The major components all showed reductions, with the reduction of nitrate most prominent at -58%, followed by organics at -19%, and sulfate at -17%. Positive matrix factorization analysis identifies fourteen source factors, including nine primary sources and five secondary sources. The secondary sources consist of sulfate-rich factor, nitrate-rich factor, and three secondary organic aerosol (SOA) factors, with SOA_I being anthropogenic SOA, SOA_II associated with later generation products of organic oxidation, and SOA_III being biogenic SOA. The combined secondary sources contributed to 69% and 63% (40 and 22 µg m-3) of PM2.5 before and during lockdown, respectively, among which the reductions in the nitrate-rich (-55%) factor was the most prominent. Among primary sources, large reductions (>80%) were observed in contributions from industrial, cooking, and vehicle emissions. Unlike some studies reporting that the restriction during the Covid-19 resulted in enhanced secondary sulfate and SOA formation, we observed decreases in both secondary inorganic and SOA formation despite the overall elevated oxidizing capacity in the suburban site. Our results indicate that the formation change in secondary inorganic and organic compounds in response to substantial reductions in urban primary precursors are different for urban and suburban environments.

12.
Chin Med J (Engl) ; 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-2051599

ABSTRACT

BACKGROUND: To date, there is no effective medicine to treat coronavirus disease 2019 (COVID-19), and the antiviral efficacy of arbidol in the treatment for COVID-19 remained equivocal and controversial. The purpose of this study was to evaluate the efficacy and safety of arbidol tablets in the treatment of COVID-19. METHODS: This was a prospective, open-label, controlled and multicenter investigator-initiated trial involving adult patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients were stratified 1:2 to either standard-of-care (SOC) or SOC plus arbidol tablets (oral administration of 200 mg per time, three times a day for 14 days). The primary endpoint was negative conversion of SARS-CoV-2 within the first week. The rates and 95% confidential intervals were calculated for each variable. RESULTS: A total of 99 patients with laboratory-confirmed SARS-CoV-2 infection were enrolled; 66 were assigned to the SOC plus arbidol tablets group, and 33 to the SOC group. The negative conversion rate of SARS-CoV-2 within the first week in patients receiving arbidol tablets was significantly higher than that of the SOC group (70.3% [45/64] vs. 42.4% [14/33]; difference of conversion rate 27.9%; 95% confidence interval [CI], 7.7%-48.1%; P  = 0.008). Compared to those in the SOC group, patients receiving arbidol tablets had a shorter duration of clinical recovery (median 7.0 days vs. 12.0 days; hazard ratio [HR]: 1.877, 95% CI: 1.151-3.060, P = 0.006), symptom of fever (median 3.0 days vs. 12.0 days; HR: 18.990, 95% CI: 5.350-67.410, P < 0.001), as well as hospitalization (median 12.5 days vs. 20.0 days; P < 0.001). Moreover, the addition of arbidol tablets to SOC led to more rapid normalization of declined blood lymphocytes (median 10.0 days vs. 14.5 days; P > 0.05). The most common adverse event in the arbidol tablets group was the elevation of transaminase (5/200, 2.5%), and no one withdrew from the study due to adverse events or disease progression. CONCLUSIONS: SOC plus arbidol tablets significantly increase the negative conversion rate of SARS-CoV-2 within the first week anas, accelerate the recovery of COVID-19 patients. During the treatment with arbidol tablets, we find no significant serious adverse events. TRIAL REGISTRATION: Chinese Clinical Trial Registry, NCT04260594, www.clinicaltrials.gov/ct2/show/NCT04260594?term=NCT04260594&draw=2&rank=1.

13.
Health Sci Rep ; 5(5): e758, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1976721

ABSTRACT

Background and Aims: Health-related stigma arises from the perceived association between a person or group of certain characteristics and a specific disease. Coronavirus disease 2019 (COVID-19) has brought about stigma targeted at individuals and groups who are perceived to be connected with the virus. Wuhan of China was not only the locale where the first COVID-19 cases were detected in the world but was also the hardest hit across China. Methods: Using new data (N = 1153) from a survey conducted in Wuhan in August 2020, this cross-sectional study aims to reveal the stigma experienced by residents in Wuhan during the COVID-19 pandemic and the impact of this experienced stigma on psychological distress, specifically posttraumatic stress disorder. Results: 69.47% (95% confidence interval (CI): 66.81%─72.13%) of the surveyed Wuhan residents have experienced some forms of stigma related to COVID-19. The average posttraumatic stress disorder score based on the impact of event scale-revised is 20.28 (95% CI: 19.096─21.468) out of 88. In particular, 27.75% (95% CI: 25.17%─30.34%) of the respondents display clinically significant distress symptoms. Moreover, this stigma not only aggravates individuals' posttraumatic stress disorder score by 10.652 (95% CI: 8.163─13.141) but also elevates the chance of developing clinically significant distress symptoms. Specifically, the probability of clinical distress is significantly higher (p < 0.001) among those who have experienced stigma (33.66%) than those who have no such experiences (12.62%). Conclusion: The public should be aware of the distress-inducing impact of stigma related to COVID-19 and prevent it from causing more harm to certain individuals and groups.

14.
Huan Jing Ke Xue ; 43(6): 2851-2857, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: covidwho-1876196

ABSTRACT

To study the variation in concentration and source analysis of metal elements during COVID-19 control in Suzhou, a multi-metal online monitor was used to determine hourly online data of 14 metal elements from December 1, 2019 to March 31, 2020. This study analyzed variation in concentration and source analysis of metal elements using a PMF model before, during, and after shutdown during COVID-19 control. The results showed that the concentrations of Cr, Mn, Zn, and Fe during shutdown decreased the most, by 87.6%, 85.6%, 78.3%, and 72.2%, respectively, compared with those before shutdown. The concentrations of Mn, Cr, Zn, and Fe after shutdown increased the most, by 227.0%, 215.4%, 147.4%, and 113.4%, respectively, compared with those of the previous stage. The diurnal variation in K differed at three stages. Zn showed a single peak shape at three stages, but the peak width and peak time were different. Unlike the concentrations, the diurnal variations in Fe, Mn, Pb, Se, and Hg were not significantly changed. The daily variation characteristics of Ca, Ba, Cu, As, Cr, and Ni during and after shutdown were significantly different from those before shutdown. The results of source analysis by the PMF model showed that metal elements mainly came from dust, motor vehicle, coal burning, industrial smelting, and mixed-combustion sources. Among them, the concentration of industrial smelting sources changed greatly, with the concentration decreasing by 89.0% during shutdown and increasing by 358.0% after shutdown.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , COVID-19/epidemiology , COVID-19/prevention & control , Dust/analysis , Environmental Monitoring , Humans , Metals , Particulate Matter/analysis
15.
Sci Bull (Beijing) ; 67(13): 1372-1387, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1867754

ABSTRACT

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.

16.
Asian Nurs Res (Korean Soc Nurs Sci) ; 15(3): 215-221, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1293550

ABSTRACT

PURPOSE: The aim of this study was to examine the behavioral responses of pregnant women during the early stage of Coronavirus Disease 2019 (COVID-19) outbreak. METHODS: We recruited 1,099 women to complete an online questionnaire survey from February 10 to February 25, 2020. The subjects were divided into two groups (the pregnant women group and the control group). RESULTS: Concerns about infection: most of the participants watched the COVID-19 news at least once a day. Protective behaviors: the utilization rate of pregnant women (often using various measures) was higher than that of nonpregnant women. Exercise: 30.6% of the pregnant women continued to exercise at home, whereas in the control group, this percentage was 8.4%. Spouse relationship: 38.8% of the subjects' relationship improved, whereas only 2.3% thought the relationship was getting worse. CONCLUSION: Pregnant women had some unique behavioral responses different from that of nonpregnant women. It is important to understand the behavioral responses of pregnant women in this network era.


Subject(s)
Anxiety/epidemiology , Anxiety/psychology , COVID-19/psychology , Depression/psychology , Pregnancy Complications, Infectious/psychology , Pregnant Women/psychology , Adult , COVID-19/epidemiology , China , Cross-Sectional Studies , Depression/epidemiology , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/prevention & control
18.
Faraday Discuss ; 226: 112-137, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1253998

ABSTRACT

Air quality in megacities is significantly impacted by emissions from vehicles and other urban-scale human activities. Amid the outbreak of Coronavirus (COVID-19) in January 2020, strict policies were in place to restrict people's movement, bringing about steep reductions in pollution activities and notably lower ambient concentrations of primary pollutants. In this study, we report hourly measurements of fine particulate matter (i.e., PM2.5) and its comprehensive chemical speciation, including elemental and molecular source tracers, at an urban site in Shanghai spanning a period before the lockdown restriction (BR) (1 to 23 Jan. 2020) and during the restriction (DR) (24 Jan. to 9 Feb. 2020). The overall PM2.5 was reduced by 27% from 56.2 ± 40.9 (BR) to 41.1 ± 25.3 µg m-3 (DR) and the organic carbon (OC) in PM2.5 was similar, averaged at 5.45 ± 2.37 (BR) and 5.42 ± 1.75 µgC m-3 (DR). Reduction in nitrate was prominent, from 18.1 (BR) to 9.2 µg m-3 (DR), accounting for most of the PM2.5 decrease. Source analysis of PM2.5 using positive matrix factorization modeling of comprehensive chemical composition, resolved nine primary source factors and five secondary source factors. The quantitative source analysis confirms reduced contributions from primary sources affected by COVID-19, with vehicular emissions showing the largest drop, from 4.6 (BR) to 0.61 µg m-3 (DR) and the percentage change (-87%) in par with vehicle traffic volume and fuel sale statistics (-60% to -90%). In the same time period, secondary sources are revealed to vary in response to precursor reductions from the lockdown, with two sources showing consistent enhancement while the other three showing reductions, highlighting the complexity in secondary organic aerosol formation and the nonlinear response to broad primary precursor pollutants. The combined contribution from the two secondary sources to PM2.5 increased from 7.3 ± 6.6 (BR) to 14.8 ± 9.3 µg m-3 (DR), partially offsetting the reductions from primary sources and nitrate while their increased contribution to OC, from 1.6 ± 1.4 (BR) to 3.2 ± 2.0 µgC m-3 (DR), almost offset the decrease coming from the primary sources. Results from this work underscore challenges in predicting the benefits to PM2.5 improvement from emission reductions of common urban primary sources.


Subject(s)
COVID-19/pathology , Carbon/analysis , Particulate Matter/analysis , Biomass , COVID-19/virology , Carbon/chemistry , China , Cluster Analysis , Environmental Monitoring/methods , Humans , Nitrates/analysis , Quarantine , SARS-CoV-2/isolation & purification
19.
Exp Gerontol ; 151: 111423, 2021 08.
Article in English | MEDLINE | ID: covidwho-1242982

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a new infectious respiratory disease, which has caused a pandemic that has become the world's leading public health emergency, threatening people of all ages worldwide, especially the elderly. Complications of COVID-19 are closely related to an upregulation of the inflammatory response revealed by the pro-inflammatory profile of plasma cytokines (to the point of causing a cytokine storm), which is also a contributing cause of the associated coagulation disorders with venous and arterial thromboembolisms, causing multiple organ dysfunction and failure. In severe fulminant cases of COVID-19, there is an activation of coagulation and consumption of clotting factors leading to a deadly disseminated intravascular coagulation (DIC). It is well established that human immune response changes with age, and also that the pro-inflammatory profile of plasma cytokines is upregulated in both healthy and diseased elderly people. In fact, normal aging is known to be associated with a subclinical, sterile, low-grade, systemic pro-inflammatory state linked to the chronic activation of the innate immune system, a phenomenon known as "inflammaging". Inflammaging may play a role as a condition contributing to the co-occurrence of the severe hyper-inflammatory state (cytokine storm) during COVID-19, and also in other severe infections (sepsis) in older people. Moreover, we must consider the impact of inflammation on coagulation due to the crosstalk between inflammation and coagulation. The systemic inflammatory state and coagulation disorders are closely related, a phenomenon that here we call "coagul-aging" (Giunta S.). In this review, we discuss the various degrees of inflammation in older adults after being infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the adverse effects of aging on the inflammatory response and coagulation system. It is important to note that although there is no gender difference in susceptibility to COVID-19 infection, however, due to differences in angiotensin-converting enzyme 2 (ACE2) expression, innate immunity, and comorbidities, older men exhibit more severe disease and higher mortality than older women. There are currently no FDA-approved specific antiviral drugs that can be used against the virus. Therapies used in patients with COVID-19 consist of remdesivir, dexamethasone, low-molecular-weight heparin, in addition to monoclonal antibodies against the spike protein of SARS-CoV-2 in the early phase of the disease. Future pharmacological research should also consider targeting the possible role of the underlying scenario of inflammaging in healthy older people to prevent or mitigate disease complications. It is worth mentioning that some specific cytokine antagonists and traditional Chinese medicine preparations can reduce the elderly's inflammatory state.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Aged , Aging , Cytokine Release Syndrome , Female , Humans , Male , SARS-CoV-2
20.
J Affect Disord ; 289: 46-54, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1193359

ABSTRACT

BACKGROUND: The COVID-19 pandemic generates negative psychological effects such as distress. Social influences on subjective distress associated with COVID-19 remain understudied in the Chinese context. Wuhan with its surrounding areas in Hubei province was not only the locale where first COVID-19 cases were detected in the world but was also the hardest hit across China. Data from Hubei provide a unique opportunity to investigate COVID-19-related subjective distress and its social correlates. METHODS: We use original data (N=3,465) from the General Social Survey on COVID-19 in Hubei, China, conducted in August 2020. Regression analysis is employed to examine the impact of socioeconomic status, family structure, and social policies on COVID-19-related subjective distress measured by the Impact of Event-Scale-Revised (IES-R). RESULTS: First, individuals with higher socioeconomic status are not more immune to distress, and actually it is those better-educated ones who are more distressed. Second, family structure influences distress. Divorced and widowed individuals are more prone to distress than those who are married or single. Those living with COVID-19-infected family members or living with a larger family are particularly more distressed. Third, stricter lockdown measures promote real and perceived protection and also increase individuals' psychological distance from the disease, thereby reducing subjective distress. LIMITATIONS: The sample is not totally random so we should use caution when generalizing the findings to the general population. CONCLUSIONS: The findings contribute to our understanding of mental health disparity during the COVID-19 pandemic. Certain social groups are at a higher risk of distress than others.


Subject(s)
COVID-19 , Pandemics , China/epidemiology , Communicable Disease Control , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL